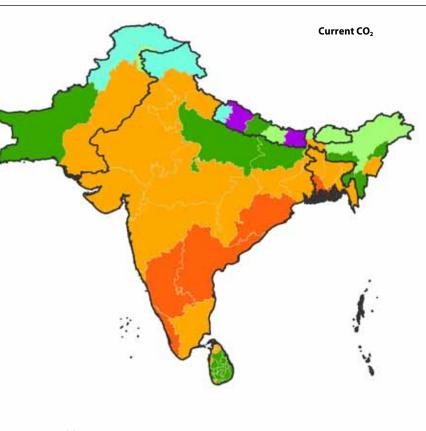
Mapping the crop o the future

by M.V.R. Murty, Tao Li, William P. Quick, Sam Mohanty, Khondoker Abdul Mottaleb, and Andrew Nelson

y 2035, the world will require more than 100 million tons of additional rice when the population surpasses 8.5 billion. To meet this global demand, the International Rice Research Institute (IRRI), through the International C₄ Rice Consortium, is developing C_4 rice, a new kind of rice equipped with a more powerful "engine" for transforming carbon dioxide (CO₂) and solar energy into food.

C₄ plants such as maize and sorghum have more efficient photosynthesis than C₃ plants. The photosynthesis in C₃ plants such as rice is not as efficient because of a wasteful process called photorespiration that takes place in the mesophyll cells of leaves. In C₄ photosynthesis, CO₂ is concentrated in the bundle sheath cells where photorespiration is negligible.

Scientists are now attempting to introduce C₄ photosynthesis, including the required changes


in the leaf structure, into rice. The good thing about C₄ rice is that it can thrive under high temperature caused by global warming, and with a decreasing fertilizer and water supply.

C₄ rice varieties may be available to farmers in another 15 years. By 2035, farmers could adopt them in irrigated areas.

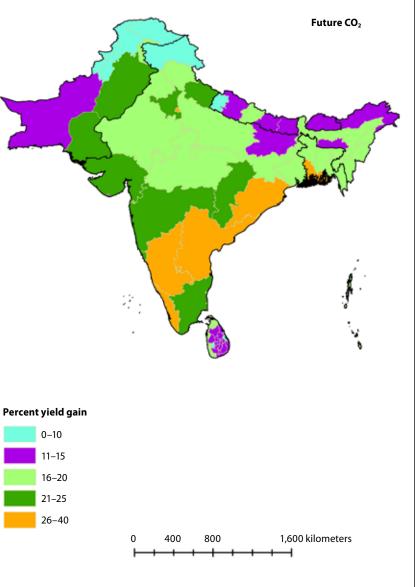
So, in the future, how much will the yield gain of C₄ rice be in South Asia, where many rice consumers live? To help answer this question, we used ORYZA2000, a rice growth simulation model, combined with the C₃ and C₄ photosynthetic modules from GECROS.

In one simulation set, we assumed that 220 kg of nitrogen was applied per hectare of rice area, and we used spatial soil data and weather from three climate scenarios between 2035 and 2040 with corresponding increases in atmospheric CO₂ (Fig. 2). The other simulation set used the current CO₂ of 400 ppm (Fig. 1).

At the current CO₂, the yield gains of C_4 rice can be more than 40% in Kerala, Odisha, Andhra Pradesh, and Karnataka in India and in Khulna Province in Bangladesh. But, at higher CO₂ level in anticipation of climate change, yield gains are lower. The reason for this is that CO₂ concentration is already high in the bundle sheath cells of C₄ rice so it won't be able to take much advantage of the increase in atmospheric CO₂. Even with this setback, the virtual C₄ rice still yields an impressive additional 26-40% in Andhra

Percent yield gain 0-10 11–15 16-20 21-25 26-40 1,095 1,460 kilometers 730 41-68

Fig. 1. Recent yield gain of C₄ rice at current CO₂.


Fig. 2. Recent yield gain of C₄ rice by 2035-40. * The results are expressed as averages of three future climate scenarios and weighted averages of rice pixels in each state/province.

Pradesh, Karnataka, Odisha, and Kerala in India, and in Barisal and Khulna provinces in Bangladesh.

Yield gains across South Asia will vary because of the interaction between soils and climate. Generally, the yield gain of C₄ rice will average 32% at current CO_2 . At higher CO_2 , on the other hand, the average yield gain will be 21%.

These initial results suggest that appropriate location-specific C₄ rice cultivars, fertilizer doses, and management options will further improve these yield gains. This

demand.

clearly shows the importance of the development and deployment of C₄ cultivars for global rice production to keep up with increased rice

Dr. Quick is the head of the C_4 *Project, Dr. Mohanty is the head of the Social* Sciences Division (SSD), and Dr. Nelson is the head of the Geographic Information Systems (GIS) Laboratory at IRRI. Dr. Murty and Dr. Li are crop modelers in the GIS group and Crop and Environmental Sciences Division, while Dr. Mottaleb is a postdoctoral fellow in SSD at IRRI.

Note: This work is a part of Global Futures for Agriculture: Integrated Modeling and Scenario Assessment funded by the Bill & Melinda Gates Foundation and the International Food Policy Research Institute.